REVISION TEST 04 (GEOMETRY) CLASS: IX : MATHEMATICS

M.M. 40 Marks

SECTION – A(2 marks each)

- 1. If a point C lies between two points A and B such that AC = BC, then prove that AC = $\frac{1}{2}$ AB. Explain by drawing the figure.
- 2. Show that in a right angled triangle, the hypotenuse is the longest side.
- **3.** ABC is a right angled triangle in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.
- 4. In fig, if PQ || ST, \angle PQR = 110⁰ and \angle RST = 130⁰ then find the value of \angle QRS.

5. In the above right sided figure, if AB || CD, $\angle APQ = 50^{\circ}$ and $\angle PRD = 127^{\circ}$, find x and y.

SECTION – B(3 marks each)

6. In the above right sided figure, the side QR of . PQR is produced to a point S. If the bisectors of \angle PQR and \angle PRS meet at point T, then prove that \angle QTR = $\frac{1}{2} \angle$ QPR.

- 7. If two sides of a triangle are unequal, prove that the longer side has the greater angle opposite to it.
- 8. Prove that "Angles opposite to equal sides of a triangle are equal".
- 9. Line *l* is the bisector of an angle ∠A and B is any point on *l*. BP and BQ are perpendiculars from B to the arms of ∠A (see the above side figure). Show that:
 (i) Δ APB ≅ ΔAQB (ii) BP = BQ or B is equidistant from the arms of ∠A.

- 10. AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$ (see the above right sided figure). Show that (i) $\triangle DAP \cong \triangle EBP$ (ii) AD = BE
- 11. Bisectors of angles B and C of a triangle ABC intersect each other at the point O(see above right sided figure). Prove that $\angle BOC = 90^\circ + \frac{1}{2} \angle A$.

SECTION – C(4 marks each)

- 12. In the figure, the sides AB and AC of a triangle ABC are produced to points E and D respectively. If bisectors BO and CO of \angle CBE and \angle BCD respectively meet at point O, then prove that \angle BOC = $90^{0} \frac{1}{2} \angle$ BAC.
- **13.** If in two right triangles, hypotenuse and one side of a triangle are equal to the hypotenuse and one side of other triangle, prove that the two triangles are congruent
- **14.** Show that the sum of three altitudes of a triangle is less than the sum of the three sides of the triangle.

