KUMAR ONLINE CLASS
CBSE(NCERT): CLASS X SCIENCE
CASE STUDY
QUESTION 45

By
M. S. Kumar Swamy
TGT(Maths)
KV Gachibowli
Mirror formula is a relation between object distance \(u \), image distance \(v \) and focal length \(f \) of a spherical mirror. It can be written as \(\frac{1}{u} + \frac{1}{v} = \frac{1}{f} = \frac{2}{R} \) where \(R \) is the radius of curvature of the mirror. This formula is valid in all situations for all spherical mirrors for all positions of the object. Consider the case, in which a mirror forms a real image of height 4 cm of an object of height 1 cm placed 20 cm away from the mirror.
(i) The distance from the object to its image is
(a) 20 cm (b) 80 cm (c) 60 cm (d) 70 cm

Here $h_1 = 1 \text{ cm}$, $h_2 = -4 \text{ cm}$, $u = -20 \text{ cm}$

We have, $m = \frac{h_2}{h_1} = -\frac{v}{u}$ i.e., $\frac{-4}{1} = -\frac{v}{-20}$

or $v = -80 \text{ cm}$

So, $|v - u| = |(-80) - (-20)| = 60 \text{ cm}$

(ii) The focal length of mirror is
(a) -16 cm (b) 12 cm (c) -15 cm (d) 10 cm

Here, we have $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ i.e., $\frac{1}{f} = \frac{1}{-20} + \frac{1}{-80} = \frac{-4 - 1}{80} = \frac{-5}{80}$

$\therefore f = \frac{-80}{5} = -16 \text{ cm}$

Consider the case, in which a mirror forms a real image of height 4 cm of an object of height 1 cm placed 20 cm away from the mirror.
(iii) The radius of curvature of the mirror is
(a) -16 cm (b) -14 cm (c) -30 cm (d) -32 cm

\[
R = 2f = -2(16) = -32 \text{ cm.}
\]

(iv) The magnification of the image is
(a) 3 (b) -6 (c) -4 (d) 8

\[
m = \frac{-v}{u} = -\frac{-80}{-20} = -4
\]

Consider the case, in which a mirror forms a real image of height 4 cm of an object of height 1 cm placed 20 cm away from the mirror.
(v) At what distance must an object be placed from mirror in order that a real image double its size may be obtained?
(a) -24 cm (b) 32 cm (c) -40 cm (d) 45 cm

\[m = -\frac{v}{u} = -2 \quad \Rightarrow \quad v = 2u \]

So, \[\frac{1}{v} + \frac{1}{u} = \frac{1}{f} \quad \Rightarrow \quad \frac{1}{u} + \frac{1}{2u} = \frac{1}{f} \]

\[\Rightarrow \quad u = \frac{3}{2} f = \frac{3}{2} (-16) = -24 \text{ cm} \]