$\mathcal{S U B I} \mathcal{E C T}: \mathcal{M A T \mathcal { H E M A T } I C S}$
$\mathcal{M A X}$. $\mathcal{M A R K S}: 40$
CLASS : X
DURATION: 1112 hrs

General Instructions:

(i). All questions are compulsory.
(ii). This question paper contains 20 questions divided into five Sections A, B, C, D and E.
(iii). Section A comprises of $\mathbf{1 0}$ MCQs of $\mathbf{1}$ mark each. Section B comprises of 4 questions of $\mathbf{2}$ marks each. Section C comprises of 3 questions of $\mathbf{3}$ marks each. Section D comprises of 1 question of $\mathbf{5}$ marks each and Section E comprises of 2 Case Study Based Questions of 4 marks each.
(iv). There is no overall choice.
(v). Use of Calculators is not permitted

SECTION - A

Questions 1 to 10 carry 1 mark each.

1. In the given figure, $\frac{A D}{B D}=\frac{A E}{E C}$ and $\angle \mathrm{ADE}=70^{\circ}, \angle \mathrm{BAC}=50^{\circ}$, then angle $\angle \mathrm{BCA}=$

(a) 70° (b) 50°
(c) 80°
(d) 60°
2. In given figure, $\mathrm{AD}=3 \mathrm{~cm}, \mathrm{AE}=5 \mathrm{~cm}, \mathrm{BD}=4 \mathrm{~cm}, \mathrm{CE}=4 \mathrm{~cm}, \mathrm{CF}=2 \mathrm{~cm}, \mathrm{BF}=2.5 \mathrm{~cm}$, then

(a) $\mathrm{DE} \| \mathrm{BC}$ (b) $\mathrm{DF} \| \mathrm{AC}$ (c) $\mathrm{EF} \| \mathrm{AB}$ (d) none of these
3. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{EDF}$ and $\triangle \mathrm{ABC}$ is not similar to $\triangle \mathrm{DEF}$, then which of the following is not true?
(a) $\mathrm{BC} \cdot \mathrm{EF}=\mathrm{AC} . \mathrm{FD}$
(b) $\mathrm{AB} \cdot \mathrm{EF}=\mathrm{AC} \cdot \mathrm{DE}$
(c) $\mathrm{BC} \cdot \mathrm{DE}=\mathrm{AB} \cdot \mathrm{EF}$
(d) $\mathrm{BC} \cdot \mathrm{DE}=\mathrm{AB} \cdot \mathrm{FD}$
4. If in two triangles ABC and $\mathrm{PQR}, \frac{A B}{Q R}=\frac{B C}{P R}=\frac{C A}{P Q}$, then
(a) $\triangle \mathrm{PQR} \sim \triangle \mathrm{CAB}$
(b) $\triangle \mathrm{PQR} \sim \triangle \mathrm{ABC}$
(c) $\triangle \mathrm{CBA} \sim \triangle \mathrm{PQR}$
(d) $\triangle \mathrm{BCA} \sim \triangle \mathrm{PQR}$
5. If in triangles ABC and $\mathrm{DEF}, \frac{A B}{D E}=\frac{B C}{F D}$, then they will be similar, when
(a) $\angle \mathrm{B}=\angle \mathrm{E}$
(b) $\angle \mathrm{A}=\angle \mathrm{D}$
(c) $\angle \mathrm{B}=\angle \mathrm{D}$
(d) $\angle \mathrm{A}=\angle \mathrm{F}$
6. The perimeters of two similar triangles are 25 cm and 15 cm respectively. If one side of first triangle is 9 cm ., what is the corresponding side of the other triangle?
(a) 5.4
(b) 3.5
(c) 5.5
(d) 4.5
7. In figure $\mathrm{DE} \| \mathrm{BC}$. If $\mathrm{BD}=x-3, \mathrm{AB}=2 x$. $\mathrm{CE}=x-2$ and $\mathrm{AC}=2 x+3$. Find x.

(a) 3
(b) 4
(c) 9
(d) none of these
8. In the figure, $\mathrm{AP}=3 \mathrm{~cm}, \mathrm{AR}=4.5 \mathrm{~cm}, \mathrm{AQ}=6 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$ and $\mathrm{AC}=10 \mathrm{~cm}$. Find the length of $A D$.

(a) 6.5
(b) 7.5
(c) 5.5
(d) 4.5

In the following questions 9 and 10 , a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:
(a)Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b)Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c)Assertion (A) is true but reason (R) is false.
(d)Assertion (A) is false but reason (R) is true.
9. Assertion (A): D and E are points on the sides AB and AC respectively of a $\triangle \mathrm{ABC}$ such that $D E \| B C$ then the value of x is 11 , when $A D=4 \mathrm{~cm}, D B=(x-4) c m, A E=8 \mathrm{~cm}$ and $E C=(3 x-$ 19) cm .

Reason (R): If a line divides any two sides of a triangle in the same ratio then it is parallel to the third side.
10. Assertion (A): D and E are points on the sides $A B$ and $A C$ respectively of a $\triangle A B C$ such that $A D$ $=5.7 \mathrm{~cm}, \mathrm{DB}=9.5 \mathrm{~cm}, \mathrm{AE}=4.8 \mathrm{~cm}$ and $\mathrm{EC}=8 \mathrm{~cm}$ then DE is not parallel to BC .
Reason (R): If a line divides any two sides of a triangle in the same ratio then it is parallel to the third side.

SECTION - B

Questions 11 to 14 carry 2 marks each.

11. In figure, $\triangle A B D$ is a right triangle, right angled at A and $A C \perp B D$. Prove that $A B^{2}=B C \cdot B D$.

12. In $\triangle A B C, D$ and E are points on the sides $A B$ and $A C$ respectively, such that $D E \| B C$. If $A D$ $=x, \mathrm{DB}=x-2, \mathrm{AE}=x+2$ and $\mathrm{EC}=x-1$, Find the value of x.
13. In the figure, $P Q R$ and $Q S T$ are two right triangles, right angled at R and T respectively. Prove that $\mathrm{QR} \times \mathrm{QS}=\mathrm{QP} \times \mathrm{QT}$

14. In the given figure, $A B C$ is a triangle, right angled at B and $B D \perp A C$. If $A D=4 \mathrm{~cm}$ and $C D=5$ cm , find $B D$ and $A B$.

SECTION - C

Questions 15 to 17 carry 3 marks each.

15. In figure, two triangles $A B C$ and $D B C$ lie on the same side of base $B C$. P is a point on $B C$ such that $\mathrm{PQ} \| \mathrm{BA}$ and $\mathrm{PR} \| \mathrm{BD}$. Prove that $\mathrm{QR} \| \mathrm{AD}$.

16. P and Q are points on the sides AB and AC respectively of a triangle ABC . If $\mathrm{AP}=2 \mathrm{~cm}, \mathrm{~PB}=4$ $\mathrm{cm}, \mathrm{AQ}=3 \mathrm{~cm}, \mathrm{QC}=6 \mathrm{~cm}$, prove that $\mathrm{BC}=3 \mathrm{PQ}$.
17. In figure, D and E are points on $A B$ and $A C$ respectively, such that $D E \| B C$. If $A D=\frac{1}{3} B D, A E$ $=4.5 \mathrm{~cm}$, find AC .

SECTION - D

Questions 18 carry 5 marks.

18. If a line is drawn parallel to one side of a triangle, the other two sides are divided in the same ratio, prove it. Use this result to prove the following :
In the given figure, if ABCD is a trapezium in which $\mathrm{AB}\|\mathrm{DC}\| \mathrm{EF}$, then $\frac{A E}{E D}=\frac{B F}{F C}$

SECTION - E (Case Study Based Questions)

Questions 19 to 20 carry 4 marks each.
19. On one day, a poor girl of height 90 cm is looking for a lamp-post for completing her homework as in her area power is not there and she finds the same at some distance away from her home. After completing the homework, she is walking away from the base of a lamp-post at a speed of $1.2 \mathrm{~m} / \mathrm{s}$. The lamp is 3.6 m above the ground (see below figure).

(i) Find her distance from the base of the lamp post. (2)
(ii) Find the length of her shadow after 4 seconds. (2)

OR
(ii) Find the ratio AC:CE. (2)
20. Vijay is trying to find the average height of a tower near his house. He is using the properties of similar triangles. The height of Vijay's house if 20 m when Vijay's house casts a shadow 10 m long on the ground. At the same time, the tower casts a shadow 50 m long on the ground and the house of Ajay casts 20 m shadow on the ground.

(a) What is the height of the tower? (1)
(b) What is the height of Ajay's house? (1)
(c) What will be the length of the shadow of the tower when Vijay's house casts a shadow of 12 m ? (2)

OR

(c) When the tower casts a shadow of 40 m , same time what will be the length of the shadow of Ajay's house? (2)

