CHAPIER 10 CIRCLES (ANS WERS)

	$\mathcal{M A X}$. $\mathcal{M A R K S}$: 40
CLASS : X	$\mathcal{D L R A T I O \mathcal { N }}$: $111 / 2 \mathrm{frs}$

General Instructions:

(i). All questions are compulsory.
(ii). This question paper contains 20 questions divided into five Sections $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E .
(iii). Section A comprises of $\mathbf{1 0}$ MCQs of $\mathbf{1}$ mark each. Section \mathbf{B} comprises of 4 questions of $\mathbf{2}$ marks each. Section C comprises of 3 questions of $\mathbf{3}$ marks each. Section D comprises of 1 question of $\mathbf{5}$ marks each and Section E comprises of 2 Case Study Based Questions of 4 marks each.
(iv). There is no overall choice.
(v). Use of Calculators is not permitted

SECTION - A

Questions 1 to 10 carry 1 mark each.

1. In the given below figure, point P is 26 cm away from the centre O of a circle and the length PT of the tangent drawn from P to the circle is 24 cm . Then the radius of the circle is

(a) 25 cm
(b) 26 cm
(c) 24 cm
(d) 10 cm

Ans: (d) \because OT is radius and PT is tangent

$\therefore \mathrm{OT} \perp \mathrm{PT}$
Now, in $\triangle \mathrm{OTP}$,
$\mathrm{OP}^{2}=\mathrm{PT}^{2}+\mathrm{OT}^{2}$
$\Rightarrow 26^{2}=24^{2}+\mathrm{OT}^{2}$
$\Rightarrow 676-576=\mathrm{OT}^{2}$
$\Rightarrow 100=\mathrm{OT}^{2} \Rightarrow 10 \mathrm{~cm}=\mathrm{OT}$
2. In the below figure AT is a tangent to the circle with centre O such that $\mathrm{OT}=4 \mathrm{~cm}$ and $\angle \mathrm{OTA}=$ 30°. Then AT is equal to
(a) 4 cm
(b) 2 cm
(c) $2 \sqrt{ } 3 \mathrm{~cm}$
(d) $4 \sqrt{ } 3 \mathrm{~cm}$

Ans: (c) $2 \sqrt{ } 3 \mathrm{~cm}$

$\angle O A T=90^{\circ}[\because$ Tangent is perpendicular to the radius]
In right angled $\triangle \mathrm{OAT}$,
$\cos 30^{\circ}=\frac{A T}{O T} \Rightarrow \frac{\sqrt{3}}{2}=\frac{A T}{4} \Rightarrow A T=2 \sqrt{3} \mathrm{~cm}$
3. In figure if O is centre of a circle, PQ is a chord and the tangent PR at P makes an angle of 50° with PQ , then $\angle \mathrm{POQ}$ is equal to

(a) 100°
(b) 80°
(c) 90°
(d) 75°

Ans: (a) 100°
OP $\perp \mathrm{PR}[\because$ Tangent and radius are \perp to each other at the point of contact $]$
$\angle \mathrm{OPQ}=90^{\circ}-50^{\circ}=40^{\circ}$
$\mathrm{OP}=\mathrm{OQ}$ [Radii]
$\therefore \angle \mathrm{OPQ}=\angle \mathrm{OQP}=40^{\circ}$
In $\triangle \mathrm{OPQ}$,
$\Rightarrow \angle \mathrm{POQ}+\angle \mathrm{OPQ}+\angle \mathrm{OQP}=180^{\circ}$
$\Rightarrow \angle \mathrm{POQ}+40^{\circ}+40^{\circ}=180^{\circ}$
$\angle \mathrm{POQ}=180^{\circ}-80^{\circ}=100^{\circ}$.
4. In figure, O is the centre of a circle, AB is a chord and AT is the tangent at A . If $\angle \mathrm{AOB}=100^{\circ}$, then $\angle \mathrm{BAT}$ is equal to

(a) 100°
(b) 40°
(c) 50°
(d) 90°

Ans: (c) 50°
$\angle \mathrm{AOB}=100^{\circ}$
$\angle \mathrm{OAB}=\angle \mathrm{OBA}(\because \mathrm{OA}$ and OB are radii)
Now, in $\triangle \mathrm{AOB}$,
$\angle \mathrm{AOB}+\angle \mathrm{OAB}+\angle \mathrm{OBA}=180^{\circ}($ Angle sum property of $\Delta)$
$\Rightarrow 100^{\circ}+\mathrm{x}+\mathrm{x}=180^{\circ}$
[Let $\angle \mathrm{OAB}=\angle \mathrm{OBA}=\mathrm{x}$]
$\Rightarrow 2 \mathrm{x}=180^{\circ}-100^{\circ}$
$\Rightarrow 2 \mathrm{x}=80^{\circ} \Rightarrow \mathrm{x}=40^{\circ}$
Also, $\angle \mathrm{OAB}+\angle \mathrm{BAT}=90^{\circ}[\because \mathrm{OA}$ is radius and TA is tangent at A$]$
$\Rightarrow 40^{\circ}+\angle \mathrm{BAT}=90^{\circ} \Rightarrow \angle \mathrm{BAT}=50^{\circ}$
5. In the figure PA and PB are tangents to the circle with centre O . If $\angle \mathrm{APB}=60^{\circ}$, then $\angle \mathrm{OAB}$ is

(a) 30°
(b) 60°
(c) 90°
(d) 15°

Ans: (a) 30°
Given $\angle \mathrm{APB}=60^{\circ}$
$\because \angle \mathrm{APB}+\angle \mathrm{PAB}+\angle \mathrm{PBA}=180^{\circ}$
$\Rightarrow \angle \mathrm{APB}+\mathrm{x}+\mathrm{x}=180^{\circ}[\because \mathrm{PA}=\mathrm{PB} \therefore \angle \mathrm{PAB}=\angle \mathrm{PBA}=\mathrm{x}($ say $)]$
$\Rightarrow 60^{\circ}+2 \mathrm{x}=180^{\circ}$
$\Rightarrow 2 \mathrm{x}=180^{\circ}-60^{\circ}$
$\Rightarrow 2 \mathrm{x}=120^{\circ} \Rightarrow \mathrm{x}=\frac{120^{\circ}}{2}=60^{\circ}$
Also, $\angle \mathrm{OAP}=90^{\circ} \Rightarrow \angle \mathrm{OAB}+\angle \mathrm{PAB}=90^{\circ}$
$\Rightarrow \angle \mathrm{OAB}+60^{\circ}=90^{\circ}$
$\Rightarrow \angle \mathrm{OAB}=30^{\circ}$
6. In the given figure, TP and TQ are two tangents to a circle with centre O , such that $\angle \mathrm{POQ}=$ 110°. Then $\angle \mathrm{PTQ}$ is equal to

(a) 55°
(b) 70°
(c) 110°
(d) 90°

Ans: (b) 70°
In quadrilateral POQT,
$\angle \mathrm{PTQ}+\angle \mathrm{TPO}+\angle \mathrm{TQO}+\angle \mathrm{POQ}=360^{\circ}$
$\Rightarrow \angle \mathrm{PTQ}+90^{\circ}+90^{\circ}+110^{\circ}=360^{\circ}$
$\Rightarrow \angle \mathrm{PTQ}+290^{\circ}=360^{\circ}$
$\Rightarrow \angle \mathrm{PTQ}=360^{\circ}-290^{\circ}=70^{\circ}$
7. In figure, AP, AQ and BC are tangents to the circle. If $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$ and $\mathrm{BC}=4 \mathrm{~cm}$, then the length of $A P(i n c m)$ is

(a) 7.5
(b) 15
(c) 10
(d) 9

Ans: (a) 7.5
$\mathrm{AP}=\mathrm{AQ}$
$\Rightarrow \mathrm{AB}+\mathrm{BP}=\mathrm{AC}+\mathrm{CQ}$
$\Rightarrow 5+\mathrm{BP}=6+\mathrm{CQ}$
$B P=1+C Q$
$\mathrm{BP}=1+\mathrm{CR}$
$(\because \mathrm{CQ}=\mathrm{CR})$
$\mathrm{BP}=1+(\mathrm{BC}-\mathrm{BR})$
$\mathrm{BP}=1+(4-\mathrm{BP})(\because \mathrm{BR}=\mathrm{BP})$
$2 \mathrm{BP}=5 \Rightarrow \mathrm{BP}=\frac{5}{2}=2.5 \mathrm{~cm}$
Now, $\mathrm{AP}=\mathrm{AB}+\mathrm{BP}=5+2.5=7.5 \mathrm{~cm}$
8. In figure, PQ and PR are tangents to a circle with centre A . If $\angle \mathrm{QPA}=27^{\circ}$, then $\angle \mathrm{QAR}$ equals to

(a) 63°
(b) 153°
(c) 126°
(d) 117°

Ans: (c) 126°
$\angle \mathrm{QPA}=\angle \mathrm{RPA}[\because \Delta \mathrm{AQP} \cong \triangle \mathrm{ARP}($ RHS congruence rule $)]$
$\Rightarrow \angle \mathrm{RPA}=27^{\circ}$
$\therefore \angle \mathrm{QPR}=\angle \mathrm{QPA}+\angle \mathrm{RPA}=27^{\circ}+27^{\circ}=54^{\circ}$
Now, $\angle \mathrm{QAR}+\angle \mathrm{AQP}+\angle \mathrm{ARP}+\angle \mathrm{QPR}=360^{\circ}$
$\Rightarrow \angle \mathrm{QAR}=90^{\circ}+90^{\circ}+54^{\circ}=360^{\circ}$
$\Rightarrow \angle \mathrm{QAR}=360^{\circ}-234^{\circ}=126^{\circ}$
In the following questions 9 and 10, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.
9. Assertion (A): From a point Q , the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm then the radius of the circle is 7 cm .
Reason (R): A tangent to a circle is perpendicular to the radius through the point of contact
Ans: (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
10. Assertion (A): In the below figure, $A B$ and $C D$ are common tangents to circles which touch each other at D. If $A B=8 \mathrm{~cm}$, then the length of $C D$ is 4 cm

Reason (R): A tangent to a circle is perpendicular to the radius through the point of contact
Ans: (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).

SECTION - B

Questions 11 to 14 carry 2 marks each.

11. In the below figure, there are two concentric circles, with centre O and of radii 5 cm and 3 cm . From an external point P , tangents PA and PB are drawn to these circles. If $\mathrm{AP}=12 \mathrm{~cm}$, find the length of BP.

Ans: $\mathrm{PA}=12 \mathrm{~cm}, \mathrm{OA}=5 \mathrm{~cm}, \mathrm{OB}=3 \mathrm{~cm}$

$\mathrm{OP}^{2}=\mathrm{OA}^{2}+\mathrm{AP}^{2}=\mathrm{OB}^{2}+\mathrm{BP}^{2}$
$\Rightarrow 25+144=9+\mathrm{BP}^{2}$
$\Rightarrow 169-9=\mathrm{BP}^{2}$
$\Rightarrow \mathrm{BP}=\sqrt{160} \mathrm{~cm}=12.65 \mathrm{~cm}$. (Approx.)
12. In figure, a circle touches the side $B C$ of $\triangle A B C$ at P and touches $A B$ and $A C$ produced at Q and R respectively. If $A Q=5 \mathrm{~cm}$, find the perimeter of $\triangle A B C$.

Ans: $A Q$ and $A R$ are tangents from the same point
$A Q=A R=5 \mathrm{~cm} . .$. (i) [Tangents from the same external points are equal]
$B Q$ and $B P$ are tangents from same point
$\Rightarrow B Q=B P$...(ii)
CP and CR are also tangents from the same point
$\Rightarrow \mathrm{CP}=\mathrm{CR} . .$. (iii)
In $\triangle \mathrm{ABC}$, Perimeter of $\triangle \mathrm{ABC}=\mathrm{AB}+\mathrm{BC}+\mathrm{AC}=\mathrm{AB}+\mathrm{BP}+\mathrm{CP}+\mathrm{AC}$
$\mathrm{AB}+\mathrm{BQ}+\mathrm{CR}+\mathrm{AC}=\mathrm{AQ}+\mathrm{AR}[$ From (ii) and (iii)]
$=5 \mathrm{~cm}+5 \mathrm{~cm}=10 \mathrm{~cm}$ [From (i)]
Perimeter of $\Delta \mathrm{ABC}=10 \mathrm{~cm}$
13. Two tangents PA and PB are drawn to the circle with centre O , such that $\angle \mathrm{APB}=120^{\circ}$. Prove that $\mathrm{OP}=2 \mathrm{AP}$.
Ans: Consider $\Delta \mathrm{s}$ PAO and PBO

$\mathrm{PA}=\mathrm{PB}$ [Tangents to a circle, from a point outside it, are equal.]
$\mathrm{OP}=\mathrm{OP}$ [Common]
$\angle \mathrm{OAP}=\angle \mathrm{OBP}=90^{\circ}$
$\therefore \triangle \mathrm{OAP} \cong \triangle \mathrm{OBP}[\mathrm{RHS}]$
$\therefore \angle \mathrm{OPA}=\angle \mathrm{OPB}=\frac{1}{2} \angle \mathrm{APB}=\frac{1}{2} \times 120^{\circ}=60^{\circ}$.
In right angled $\triangle \mathrm{OAP}, \frac{A P}{O P}=\cos 60^{\circ}=\frac{1}{2} \Rightarrow \mathrm{OP}=2 \mathrm{AP}$.
14. In figure, $A P$ and $B P$ are tangents to a circle with centre O, such that $A P=5 \mathrm{~cm}$ and $\angle A P B=$ 60°. Find the length of chord AB .

Ans: $\mathrm{AP}=\mathrm{BP}$ [tangents from external point P]
$\therefore \angle \mathrm{PAB}=\angle \mathrm{PBA}$ [Angles opposite to equal sides]
Now $\angle \mathrm{APB}+\angle \mathrm{PAB}+\angle \mathrm{PBA}=180^{\circ}$
$\Rightarrow 60^{\circ}+2 \angle \mathrm{PAB}=180^{\circ}$
$\Rightarrow \angle \mathrm{PAB}=60^{\circ}$
$\therefore \triangle \mathrm{APB}$ is an equilateral Δ
$\mathrm{AB}=\mathrm{AP}=5 \mathrm{~cm}$

SECTION - C

Questions 15 to 17 carry 3 marks each.
15. Prove that the intercept of a tangent between two parallel tangents to a circle subtends a right angle at the centre.
Ans: AB and CD are two tangents to a circle and $\mathrm{AB} \| \mathrm{CD}$.
Tangent BD intercepts an angle BOD at the centre.

$\mathrm{OP} \perp \mathrm{BD}$.
[A tangent at any point of a circle is perpendicular to the radius through the point of contact.] In right angled $\Delta \mathrm{s}$ OQB and OPB,
$\angle 1=\angle 2$,
Similarly in right angled Δs OPD and ORD
$\angle 3=\angle 4$
$\left.\therefore \angle \mathrm{BOD}=\angle 1+\angle 3=\frac{1}{2}[2 \angle 1+2 \angle 3)\right]=\frac{1}{2}(\angle 1+\angle 1+\angle 3+\angle 3)$
$=\frac{1}{2}(\angle 1+\angle 2+\angle 3+\angle 4)=\frac{1}{2}\left(180^{\circ}\right)=90^{\circ}$.
16. In figure, from an external point P , two tangents PT and PS are drawn to a circle with centre O and radius r. If $\mathrm{OP}=2 r$, show that $\angle \mathrm{OTS}=\angle \mathrm{OST}=30^{\circ}$.

Ans: In $\triangle \mathrm{OTS}$ OT $=\mathrm{OS}$ [radii]
$\Rightarrow \angle \mathrm{OTS}=\angle \mathrm{OST} \ldots(i)$
\therefore In right $\triangle \mathrm{OTP}, \frac{O T}{O P}=\sin \angle \mathrm{TPO}$
$\Rightarrow \frac{r}{2 r}=\sin \angle \mathrm{TPO} \Rightarrow \sin \angle \mathrm{TPO}=\frac{1}{2}=\sin 30^{\circ} \Rightarrow \angle \mathrm{TPO}=30^{\circ}$
Similarly $\angle \mathrm{OPS}=30^{\circ}$
$\Rightarrow \angle \mathrm{TPS}=30^{\circ}+30^{\circ}=60^{\circ}$
Also $\angle \mathrm{TPS}+\angle \mathrm{SOT}=180^{\circ}$
$\Rightarrow \angle \mathrm{SOT}=120^{\circ}$
In $\triangle \mathrm{SOT}, \angle \mathrm{SOT}+\angle \mathrm{OTS}+\angle \mathrm{OST}=180^{\circ}$
$\Rightarrow 120^{\circ}+2 \angle \mathrm{OTS}=180^{\circ}$
$\Rightarrow \angle \mathrm{OTS}=30^{\circ}$
From (i) and (ii)
$\angle \mathrm{OTS}=\angle \mathrm{OST}=30^{\circ}$
17. In figure, two equal circles, with centres O and O^{\prime}, touch each other at X . OO^{\prime} produced meets the circle with centre O^{\prime} at A . AC is tangent to the circle with centre O , at the point $\mathrm{C}^{\prime} \mathrm{O}^{\prime} \mathrm{D}$ is perpendicular to AC. Find the value of $\frac{D O^{\prime}}{C O}$.

Ans: AC is tangent
$\therefore \mathrm{CO} \perp \mathrm{AC}$
Also $\mathrm{O}^{\prime} \mathrm{D} \perp \mathrm{AC}$
$\therefore \mathrm{O}^{\prime} \mathrm{D} \| \mathrm{OC}$
Now $\mathrm{OX}=\mathrm{XO}^{\prime}=\mathrm{O}^{\prime} \mathrm{A}$
$\Rightarrow \mathrm{AO}=3 \mathrm{AO} \Rightarrow \frac{A O^{\prime}}{A O}=\frac{1}{3}$
In $\triangle \mathrm{AO}^{\prime} \mathrm{D}, \triangle \mathrm{AOC}$
$\angle \mathrm{ADO}=\angle \mathrm{ACO}\left[\right.$ each $\left.90^{\circ}\right] ; \angle \mathrm{A}=\angle \mathrm{A}$
$\therefore \triangle \mathrm{AO}^{\prime} \mathrm{D} \sim \triangle \mathrm{AOC}$
$\therefore \frac{A O^{\prime}}{A O}=\frac{D O^{\prime}}{C O}$
$\Rightarrow \frac{D O^{\prime}}{C O}=\frac{1}{3} \quad[U \operatorname{sing}(\mathrm{i})]$

SECTION-D

Questions 18 carry 5 marks.

18. In figure, the sides $A B, B C$ and $C A$ of triangle $A B C$ touch a circle with centre O and radius r at P, Q and R respectively.
Prove that
(i) $\mathrm{AB}+\mathrm{CQ}=\mathrm{AC}+\mathrm{BQ}$
(ii) Area $(\triangle \mathrm{ABC})=\frac{1}{2}$ (perimeter of $\left.\triangle \mathrm{ABC}\right) \times r$

Ans:
(i) $\mathrm{AP}=\mathrm{AR}[$ Tangents from A$] \ldots$ (i)

Similarly, $\mathrm{BP}=\mathrm{BQ}$...(ii)
CR = CQ ...(iii)

Now,
$\because \mathrm{AP}=\mathrm{AR}$
$\Rightarrow(\mathrm{AB}-\mathrm{BP})=(\mathrm{AC}-\mathrm{CR})$
$\Rightarrow \mathrm{AB}+\mathrm{CR}=\mathrm{AC}+\mathrm{BP}$
$\Rightarrow \mathrm{AB}+\mathrm{CQ}=\mathrm{AC}+\mathrm{BQ}$ [Using eq. (ii) and (iii)]
(ii) Let $\mathrm{AB}=x, \mathrm{BC}=y, \mathrm{AC}=z$
\therefore Perimeter of $\triangle \mathrm{ABC}=x+y+z$
Area of $\triangle \mathrm{ABC}=\frac{1}{2}[$ area of $\triangle \mathrm{AOB}+$ area of $\triangle \mathrm{BOC}+$ area of $\triangle \mathrm{AOC}]$
\Rightarrow Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{OP}+\frac{1}{2} \times \mathrm{BC} \times \mathrm{OQ}+\frac{1}{2} \times \mathrm{AC} \times \mathrm{OR}$
\Rightarrow Area of $\triangle \mathrm{ABC}=\frac{1}{2} x \times r+\frac{1}{2} y \times r+\frac{1}{2} z \times r$
\Rightarrow Area of $\Delta \mathrm{ABC}=\frac{1}{2}(x+y+z) \times r$
\Rightarrow Area of $\triangle \mathrm{ABC}=\frac{1}{2}($ Perimeter of $\Delta \mathrm{ABC}) \times r$ [Using (iv) $]$

SECTION - E (Case Study Based Questions)

Questions 19 to 20 carry 4 marks each.

19. The discus throw is an event in which an athlete attempts to throw a discus. The athlete spins anti-clockwise around one and a half times through a circle, then releases the throw. When released, the discus travels along tangent to the circular spin orbit.

In the given figure, AB is one such tangent to a circle of radius 75 cm . Point O is centre of the circle and $\angle \mathrm{ABO}=30^{\circ}$. PQ is parallel to OA .

Based on the above, information:
(a) Find the length of AB . (1)
(b) Find the length of OB. (1)
(c) Find the length of AP. (2)

OR

(c) Find the length of PQ. (2)

Ans: (a) $\tan 30^{\circ}=\frac{1}{\sqrt{3}}=\frac{75}{A B} \Rightarrow A B=75 \sqrt{3} \mathrm{~cm}$
(b) $\sin 30^{\circ}=\frac{1}{2}=\frac{75}{O B} \Rightarrow O B=150 \mathrm{~cm}$
(c) $\mathrm{QB}=150-75=75 \mathrm{~cm}$
$\Rightarrow \mathrm{Q}$ is mid point. of OB
Since $P Q \| A O$ therefore P is mid point of $A B$
Hence $A P=\frac{75 \sqrt{3}}{2} \mathrm{~cm}$.

OR

$Q B=150-75=75 \mathrm{~cm}$
Now, $\triangle B Q P \sim \triangle B O A$
$\Rightarrow \frac{Q B}{O B}=\frac{P Q}{O A} \Rightarrow \frac{1}{2}=\frac{P Q}{75} \Rightarrow P Q=\frac{75}{2} \mathrm{~cm}$
20. Circles play an important part in our life. When a circular object is hung on the wall with a cord at nail N, the cords NA and NB work like tangents. Observe the figure, given that $\angle \mathrm{ANO}=30^{\circ}$ and $\mathrm{OA}=5 \mathrm{~cm}$.

Based on the above, answer the following questions:
(a) Find the distance AN.
(b) Find the measure of $\angle \mathrm{AOB}$.
(c) Find the total length of cords NA, NB and the chord AB .

OR

(c) If $\angle A N O$ is 45°, then name the type of quadrilateral OANB.

Ans: (a) $\tan 30^{\circ}=\frac{5}{A N} \Rightarrow A N=5 \sqrt{3} \mathrm{~cm}$

(b) $\angle \mathrm{BNO}=30^{\circ} \Rightarrow \angle \mathrm{BNA}=60^{\circ}$
$\therefore \angle \mathrm{AOB}=180^{\circ}-60^{\circ}=120^{\circ}$
(c) $\mathrm{AN}=53$ and in $\triangle \mathrm{ANB}, \angle \mathrm{ANB}=60^{\circ}$ and $\mathrm{NA}=\mathrm{NB}$
$\therefore \angle \mathrm{NAB}=\angle \mathrm{NBA}=60^{\circ}$ or $\triangle \mathrm{NAB}$ is an equilateral triangle.
Hence, $\mathrm{AB}=53 \mathrm{~cm}$.
$A N+N B+A B=3 \times 5 \sqrt{3}=15 \sqrt{3} \mathrm{~cm}$.
(c) $\angle \mathrm{ANO}=45^{\circ} \Rightarrow \angle \mathrm{AOB}=90^{\circ}$
\therefore Each angle of quad. AOBN is 90°.
Also, $\mathrm{OA}=\mathrm{OB}$.
\therefore OANB is a square.

