SECTION - A

Questions 1 to 6 carry 1 mark each.

1. A rectangular wire of length 40 cm and breadth 20 cm is bent in the shape of a square. The side of the square is
(a) 10 cm
(b) 20 cm
(c) 30 cm
(d) 40 cm

Ans: (c) 30 cm
Side of square $=2(40+20) / 4=30 \mathrm{~cm}$
2. The diameter of a circle is 14 cm . Find its circumference
(a) 14 cm
(b) 24 cm
(c) 44 cm
(d) 66 cm

Ans: (c) 44 cm
Circumference $=2 \times 22 / 7 \times 7=44 \mathrm{~cm}$
3. When the circumference and area of a circle are numerically equal, what is the diameter numerically equal to?
(a) Area
(b) Circumference
(c) 271
(d) 4

Ans: (d) 4
Circumference of circle $=$ Area of circle
$\Rightarrow 2 \pi r=\pi r^{2}$
$\Rightarrow 2 \mathrm{r}=\mathrm{r}^{2} \Rightarrow 2=\mathrm{r} \Rightarrow$ diameter $=2 \mathrm{r}=4$
4. The area of a circle is 2464 m 2 , then the diameter is
(a) 56 m
(b) 154 m
(c) 176 m
(d) none of these

Ans: (a) 56 m
By given, Area $=2464 \mathrm{~m}^{2}$
$\Rightarrow \pi \mathrm{r}^{2}=2464$
$\Rightarrow \frac{22}{7} r^{2}=2464 \Rightarrow r^{2}=\frac{2464 \times 7}{22}=784$
$\Rightarrow \mathrm{r}=28 \mathrm{~m} \Rightarrow$ diameter $=2 \mathrm{r}=58 \mathrm{~m}$
5. A wire is bent to form a square of side 22 cm . If the wire is rebent to form a circle, its radius is
(a) 22 cm
(b) 14 cm
(c) 11 cm
(d) 7 cm

Ans: (b) 14 cm
From the question it is given that, side of square is 22 cm .
And also, perimeter of a square and circumference of circle are equal, because the length of the wire is same.
Perimeter of square $=$ circumference of circle
$\Rightarrow 4 \times$ side $=2 \times \pi \times r \Rightarrow 4 \times 22=2 \times(22 / 7) \times r$
$\Rightarrow \mathrm{r}=(4 \times 22 \times 7) /(2 \times 22) \Rightarrow \mathrm{r}=14 \mathrm{~cm}$
Therefore, radius of circle is 14 cm .
6. Area of a rectangle and the area of a circle are equal. If the dimensions of the rectangle are $14 \mathrm{~cm} \times 11 \mathrm{~cm}$, then radius of the circle is
(a) 21 cm
(b) 10.5 cm
(c) 14 cm
(d) 7 cm .

Ans: (d) 7 cm
From the question it is given that, dimensions of rectangle length $=14 \mathrm{~cm}$, breadth $=11 \mathrm{~cm}$
As area of rectangle $=$ area of circle
\Rightarrow length \times breadth $=\pi r^{2}$
$\Rightarrow 14 \times 11=(22 / 7) \times \mathrm{r}^{2}$
$\Rightarrow r^{2}=(14 \times 11 \times 7) / 22 \Rightarrow r^{2}=49$
$\Rightarrow \mathrm{r}=\sqrt{ } 49 \Rightarrow \mathrm{r}=7 \mathrm{~cm}$

SECTION - B(CCT Questions)
 Questions 7 to 10 carry 1 mark each.

CCT Ouestion

Anita is making face mask using green coloured card sheet for her Art project. From a circular card sheet of radius 14 cm , she removed two circles of radius 3.5 cm and a rectangle of length 3 cm and breadth 1 cm . (as shown in the below figure).

Answer the following questions based on the above information:
7. Find the area of small two circles.
(a) $616 \mathrm{~cm}^{2}$
(b) $3 \mathrm{~cm}^{2}$
(c) $77 \mathrm{~cm}^{2}$
(d) $536 \mathrm{~cm}^{2}$

Ans: (c) $77 \mathrm{~cm}^{2}$
Area of the 2 small circles $=2 \times \pi \mathrm{r}^{2}$
$=2 \times\left(22 / 7 \times 3.5^{2}\right)=2 \times(22 / 7 \times 3.5 \times 3.5)=2 \times((22 / 7) \times 12.25)=2 \times 38.5=77 \mathrm{~cm}^{2}$
8. Find the area of big circle.
(a) $616 \mathrm{~cm}^{2}$
(b) $3 \mathrm{~cm}^{2}$
(c) $77 \mathrm{~cm}^{2}$
(d) $536 \mathrm{~cm}^{2}$

Ans: (a) $616 \mathrm{~cm}^{2}$
Area of the big circle $=\pi r^{2}$
$=22 / 7 \times 14^{2}=22 / 7 \times 14 \times 14=22 \times 2 \times 14=616 \mathrm{~cm}^{2}$
9. Find the area of the remaining sheet.
(a) $616 \mathrm{~cm}^{2}$
(b) $80 \mathrm{~cm}^{2}$
(c) $77 \mathrm{~cm}^{2}$
(d) $536 \mathrm{~cm}^{2}$

Ans: (d) $536 \mathrm{~cm}^{2}$
Area of the rectangle $=$ Length \times Breadth $=3 \times 1=3 \mathrm{~cm}^{2}$
Area of the remaining part $=$ Card sheet area $-($ Area of two small circles + Rectangle area $)$
$=616-(77+3)=616-80=536 \mathrm{~cm}^{2}$
10. Find the area of the sheet removed.
(a) $616 \mathrm{~cm}^{2}$
(b) $80 \mathrm{~cm}^{2}$
(c) $77 \mathrm{~cm}^{2}$
(d) $536 \mathrm{~cm}^{2}$

Ans: (b) $80 \mathrm{~cm}^{2}$
Area of the sheet removed $=$ Area of two small circles + Rectangle area $=77+3=80 \mathrm{~cm}^{2}$

SECTION - C

Questions 11 to 13 carry 2 marks each.

11. The base of a parallelogram is twice its height. If the area of the parallelogram is $512 \mathrm{~cm}^{2}$, find the base and height.
Ans: Let the height of the parallelogram be xcm .
Then the base of the parallelogram is 2 x cm . [from given data]
Given that the area of the parallelogram $=512 \mathrm{~cm}^{2}$
We know that area of a parallelogram $=$ Base x Height
$\Rightarrow 512=(2 x)(x) \Rightarrow 512=2 x^{2}$
$\Rightarrow \mathrm{x}^{2}=512 / 2=256 \mathrm{~cm}^{2}$
$\Rightarrow x^{2}=(16)^{2} \Rightarrow x=16 \mathrm{~cm}$
Hence height of parallelogram $=x=16 \mathrm{~cm}$
And base of the parallelogram $=2 \mathrm{x}=2 \times 16=32 \mathrm{~cm}$
12. The ratio of the radii of two circles is $3: 2$. What is the ratio of their circumferences?

Ans: Given that the ratio of the radii $=3: 2$
So, let the radii of the two circles be 3 r and 2 r respectively.
And let C_{1} and C_{2} be the circumference of the two circles of radii 3 r and 2 r respectively.
$\mathrm{C}_{1}=2 \pi \times 3 \mathrm{r}=6 \pi \mathrm{r} \ldots$ (i)
Now $\mathrm{C}_{2}=2 \times 2 \pi \mathrm{r}=4 \pi \mathrm{r} \ldots$ (ii)
Consider, $\mathrm{C}_{1} / \mathrm{C}_{2}=(6 \pi \mathrm{r}) / 4 \pi \mathrm{r}=6 / 4=3 / 2$
$\mathrm{C}_{1}: \mathrm{C}_{2}=3: 2$
13. If the area of a circle is $50.24 \mathrm{~m}^{2}$, find its circumference.

Ans: Given area of a circle is $50.24 \mathrm{~m}^{2}$
We know that area of circle $=\pi \mathrm{r}^{2}$
$\Rightarrow 50.24=(22 / 7) \times \mathrm{r}^{2} \Rightarrow \mathrm{r}^{2}=(50.24 \times 7) / 22 \Rightarrow \mathrm{r}^{2}=15.985 \Rightarrow \mathrm{r}=3.998 \mathrm{~m}$
We know that circumference of circle $=2 \pi \mathrm{r}$
$\Rightarrow \mathrm{C}=2 \times(22 / 7) \times 3.998 \Rightarrow \mathrm{C}=25.12 \mathrm{~m}$

SECTION - D

Questions 14 to 17 carry 3 marks each.
14. The diameter of a wheel of a car is 63 cm . Find the distance travelled by the car during the period, the wheel makes 1000 revolutions.
Ans: It may be noted that in one revolution, the cycle covers a distance equal to the circumference of the wheel.
Given the diameter of the wheel $=63 \mathrm{~cm}$
We know that circumference of the wheel $=\pi \mathrm{d}=22 / 7 \times 63=198 \mathrm{~cm}$.
Thus, the cycle covers 198 cm in one revolution.
Therefore, the distance covered by the cycle in 1000 revolutions $=(198 \times 1000)$
$=198000 \mathrm{~cm}=1980 \mathrm{~m}$.
15. The radius of a circle is 14 cm . Find the radius of the circle whose area is double of the area of the circle.
Ans: Let the area of the circle whose radius is 14 cm be A_{1}.
We know that area of the circle $=\pi r^{2}$
$\therefore \mathrm{A}_{1}=\pi(14)^{2}$
Let A_{2} and r_{2} be the area and radius of the second circle respectively whose area is double the area of circle A_{1}.
$\mathrm{A}_{2}=2 \mathrm{~A}_{1} \Rightarrow \pi\left(\mathrm{r}_{2}\right)^{2}=2 \times \pi(14)^{2} \Rightarrow\left(\mathrm{r}_{2}\right)^{2}=2 \times(14)^{2} \Rightarrow \mathrm{r}_{2}=14 \sqrt{ } 2 \mathrm{~cm}$
Hence the radius of the circle A_{2} is $14 \sqrt{2} \mathrm{~cm}$.
16. PQRS is a parallelogram (see below figure). QM is the height from Q to SR and QN is the height from Q to PS . If $\mathrm{SR}=12 \mathrm{~cm}$ and $\mathrm{QM}=7.6 \mathrm{~cm}$. Find:

(a) the area of the parallelogram PQRS
(b) QN , if $\mathrm{PS}=8 \mathrm{~cm}$

Ans: From the question, it is given that
$\mathrm{SR}=12 \mathrm{~cm}, \mathrm{QM}=7.6 \mathrm{~cm}$
(a) We know that, Area of the parallelogram $=$ Base \times Height
$=\mathrm{SR} \times \mathrm{QM}=12 \times 7.6=91.2 \mathrm{~cm}^{2}$
(b) Area of the parallelogram $=$ Base \times Height
$\Rightarrow 91.2=\mathrm{PS} \times \mathrm{QN} \Rightarrow 91.2=8 \times \mathrm{QN} \Rightarrow \mathrm{QN}=91.2 / 8$
$\Rightarrow \mathrm{QN}=11.4 \mathrm{~cm}$
17. The area of a rhombus is $28 \mathrm{~m}^{2}$. If its perimeter be 28 m , find its altitude.

Ans: Given perimeter of a rhombus $=28 \mathrm{~m}$
But we know that perimeter of a rhombus $=4$ (Side)
$\Rightarrow 4($ Side $)=28 \mathrm{~m} \Rightarrow$ Side $=28 / 4 \Rightarrow$ Side $=7 \mathrm{~m}$
Now, Area of the rhombus $=28 \mathrm{~m}^{2}$
But we know that area of rhombus $=$ Side x Altitude
$\Rightarrow($ Side x Altitude $)=28 \mathrm{~m}^{2}$
$\Rightarrow(7 \mathrm{x}$ Altitude $)=28 \mathrm{~m}^{2}$
\Rightarrow Altitude $=28 / 7=4 \mathrm{~m}$

SECTION - E

Questions 18 to 20 carry 4 marks each.
18. $D L$ and $B M$ are the heights on sides $A B$ and $A D$, respectively, of parallelogram $A B C D$ (see below figure). If the area of the parallelogram is $1470 \mathrm{~cm} 2, A B=35 \mathrm{~cm}$ and $A D=49 \mathrm{~cm}$, find the length of BM and DL.

Ans: From the question, it is given that
Area of the parallelogram $=1470 \mathrm{~cm}^{2}$
Given, $\mathrm{AB}=35 \mathrm{~cm}$ and $\mathrm{AD}=49 \mathrm{~cm}$
We know that, Area of the parallelogram $=$ Base \times Height
$\Rightarrow 1470=\mathrm{AB} \times \mathrm{BM} \Rightarrow 1470=35 \times \mathrm{DL} \Rightarrow \mathrm{DL}=1470 / 35$
$\Rightarrow \mathrm{DL}=42 \mathrm{~cm}$
Area of the parallelogram $=$ Base \times Height
$\Rightarrow 1470=\mathrm{AD} \times \mathrm{BM} \Rightarrow 1470=49 \times \mathrm{BM}$
$\Rightarrow \mathrm{BM}=1470 / 49 \Rightarrow \mathrm{BM}=30 \mathrm{~cm}$
19. Two circles are drawn inside a big circle with diameters $2 / 3$ rd and $1 / 3$ rd of the diameter of the big circle as shown in below figure. Find the area of the shaded portion, if the length of the diameter of the circle is 18 cm .

Ans: It is given that, diameter of the big circle $=18 \mathrm{~cm}$
Radius of the big circle $=9 \mathrm{~cm}$
Area of the big circle, $\mathrm{A}=\pi \mathrm{r}^{2}=\pi(9)^{2}=81 \pi \mathrm{~cm}^{2}$
Let $\mathrm{d}_{1}=(2 / 3) \times 18=12 \mathrm{~cm}$
$\Rightarrow \mathrm{r}_{1}=6 \mathrm{~cm}$
Area of the circle, $\mathrm{A}_{1}=\pi \mathrm{r}^{2}=\pi(6)^{2}=36 \pi \mathrm{~cm}^{2}$
$\Rightarrow \mathrm{d}_{2}=(1 / 3) \times 18=6 \mathrm{~cm}$
$\Rightarrow \mathrm{r}_{2}=3 \mathrm{~cm}$
Area of the circle, $\mathrm{A}_{2}=\pi \mathrm{r}^{2}=\pi(3)^{2}=9 \pi \mathrm{~cm}^{2}$
Area of the shaded portion $=\mathrm{A}-\left(\mathrm{A}_{1}+\mathrm{A}_{2}\right)$
Area of the shaded portion $=81 \pi-(36 \pi+9 \pi)=36 \pi \mathrm{~cm}^{2}$
20. Shazli took a wire of length 44 cm and bent it into the shape of a circle. Find the radius of that circle. Also, find its area. If the same wire is bent into the shape of a square, what will be the length of each of its sides? Which figure encloses more area, the circle or the square? (Take $\pi=$ 22/7)
Ans: From the question, it is given that
Length of wire that Shazli took $=44 \mathrm{~cm}$
Then, If the wire is bent into a circle, We know that the circumference of the circle $=2 \pi \mathrm{r}$
$\Rightarrow 44=2 \times(22 / 7) \times \mathrm{r}$
$\Rightarrow 44=44 / 7 \times r$
$\Rightarrow(44 \times 7) / 44=r \Rightarrow r=7 \mathrm{~cm}$
Area of the circle $=\pi \mathrm{r}^{2}$
$=22 / 7 \times 7^{2}=22 / 7 \times 7 \times 7$
$=22 \times 7=154 \mathrm{~cm}^{2}$
Now, If the wire is bent into a square,
The length of each side of the square $=44 / 4=11 \mathrm{~cm}$
Area of the square $=$ Length of the side of square ${ }^{2}=11^{2}=121 \mathrm{~cm}^{2}$
By comparing the two areas of the square and circle,
Clearly, the circle encloses more area.

