($\mathcal{A N S}$ WERS)
$\mathcal{S U B I} \mathcal{E C T}: \quad \mathcal{M A T H} \mathcal{H M A T} I C S$
CLASS : VII
$\mathcal{M A X}$. $\mathcal{M A R K S}: 40$
$\mathcal{D U R A} \mathcal{A}$ I $O \mathcal{N}: 1^{11 / 2} \mathrm{hr}$

General Instructions:

(i). All questions are compulsory.
(ii). This question paper contains 20 questions divided into five Sections A, B, C, D and E.
(iii). Section A comprises of $\mathbf{6}$ MCQs of 1 mark each. Section B comprises of $\mathbf{1}$ CCT question of $\mathbf{4}$ marks each which contains 4 MCQs. Section C comprises of 3 questions of 2 marks each. Section D comprises of 4 questions of $\mathbf{3}$ marks each and Section \mathbf{E} comprises of $\mathbf{3}$ questions of $\mathbf{4}$ marks each.

SECTION - A

Questions 1 to 6 carry 1 mark each.

1. Find x such that $\frac{-3}{8}$ and $\frac{x}{-24}$ are equivalent rational numbers.
(a) 3
(b) 9
(c) 8
(d) none of these

Ans: (b) 9
2. Rewrite the rational number $\frac{24}{-72}$ in the simplest form.
(a) $\frac{12}{-36}$
(b) $\frac{6}{-18}$
(c) $\frac{1}{-3}$
(d) none of these

Ans: (c) $\frac{1}{-3}$
3. Find the area of a right triangle whose base is 3 cm , perpendicular is 2 cm and hypotenuse is 5 cm .
(a) $3 \mathrm{~cm}^{2}$
(b) $7.5 \mathrm{~cm}^{2}$
(c) $5 \mathrm{~cm}^{2}$
(d) 6 cm

Ans: (a) $3 \mathrm{~cm}^{2}$
4. If the area of the triangle is $36 \mathrm{~cm}^{2}$ and the height is 3 cm , the base of the triangle will be
(a) 12 cm
(b) 39 cm
(c) 108 cm
(d) 24 cm

Ans: (d) 24 cm
5. What will be the area of circular button of radius 7 cm
(a) $154 \mathrm{~cm}^{2}$
(b) $49 \mathrm{~cm}^{2}$
(c) 154 cm
(d) $3.14 \times 7 \mathrm{~cm}^{2}$

Ans: (a) $154 \mathrm{~cm}^{2}$
6. Find x such that $\frac{13}{6}=\frac{-65}{x}$
(a) -30
(b) 30
(c) -6
(d) none of these

Ans: (a) -30

SECTION - B(CCT Questions)
 Questions 7 to 10 carry 1 mark each.

CCT Question

In Sudarshan Nagar colony, two cross roads, each of width 3 m , run at right angles through the centre of a rectangular park of length 90 m and breadth 60 m and parallel to its sides. Nikhil is a student of Class VII residing in Sudarshan Nagar colony. One day he has taken all the measurements and drawn a rough diagram of two cross roads as shown in below figure:

Answer the following questions based on the above information:
7. Find the Area of the rectangle ABCD
(a) $270 \mathrm{~m}^{2}$
(b) $180 \mathrm{~m}^{2}$
(c) $9 \mathrm{~m}^{2}$
(d) $441 \mathrm{~m}^{2}$

Ans: (a) $270 \mathrm{~m}^{2}$
8. Find the Area of the rectangle EFGH
(a) $270 \mathrm{~m}^{2}$
(b) $180 \mathrm{~m}^{2}$
(c) $9 \mathrm{~m}^{2}$
(d) $441 \mathrm{~m}^{2}$

Ans: (b) $180 \mathrm{~m}^{2}$
9. Find the Area of the Square KLMN
(a) $270 \mathrm{~m}^{2}$
(b) $180 \mathrm{~m}^{2}$
(c) $9 \mathrm{~m}^{2}$
(d) $441 \mathrm{~m}^{2}$

Ans: (c) $9 \mathrm{~m}^{2}$
10. Find the area of the road.
(a) $270 \mathrm{~m}^{2}$
(b) $180 \mathrm{~m}^{2}$
(c) $9 \mathrm{~m}^{2}$
(d) $441 \mathrm{~m}^{2}$

Ans: (d) $441 \mathrm{~m}^{2}$

SECTION - C

Questions 11 to 13 carry 2 marks each.
11. Find: (i) $\frac{2}{3} \times \frac{-7}{8}$ (ii) $\frac{-6}{7} \times \frac{5}{7}$

Ans: (i) $\frac{2}{3} \times \frac{-7}{8}=\frac{1}{3} \times \frac{-7}{4}=\frac{-7}{12}$ (ii) $\frac{-6}{7} \times \frac{5}{7}=\frac{-30}{49}$
12. Sudhanshu divides a circular disc of radius 7 cm in two equal parts. What is the perimeter of each semicircular shape disc?
Ans: Perimeter of semicircular shaped disc $=\pi r+2 r$

$$
=\left(\frac{22}{7} \times 7\right)+(2 \times 7)=\left(\frac{22}{7} \times 7\right)+(14)=22+14=36 \mathrm{~cm}
$$

13. Find base $B C$, if the area of the triangle $A B C$ is $36 \mathrm{~cm}^{2}$ and the height $A D$ is 3 cm .

Ans: $\frac{1}{2} \times B C \times A D=$ Area
$\Rightarrow 36=\frac{1}{2} \times B C \times 6 \Rightarrow \mathrm{BC}=12 \mathrm{~cm}$

SECTION - D

Questions 14 to 17 carry 3 marks each.

14. Write the following rational numbers ion ascending order:
(i) $\frac{-3}{5}, \frac{-2}{5}, \frac{-1}{5}$ (ii) $\frac{-1}{3}, \frac{-2}{9}, \frac{-4}{3}$ (iii) $\frac{-3}{7}, \frac{-3}{2}, \frac{-3}{4}$

Ans: (i) The given rational numbers are in the form of like fractions,
Hence, $(-3 / 5)<(-2 / 5)<(-1 / 5)$
(ii) LCM of 3,9 , and 3 is 9

Now, $(-1 / 3)=[(-1 \times 3) /(3 \times 9)]=(-3 / 9)$
$(-2 / 9)=[(-2 \times 1) /(9 \times 1)]=(-2 / 9)$
$(-4 / 3)=[(-4 \times 3) /(3 \times 3)]=(-12 / 9)$
Clearly, $(-12 / 9)<(-3 / 9)<(-2 / 9)$
Hence, $(-4 / 3)<(-1 / 3)<(-2 / 9)$
(iii) LCM of 7,2 , and 4 is 28

Now, $(-3 / 7)=[(-3 \times 4) /(7 \times 4)]=(-12 / 28)$
$(-3 / 2)=[(-3 \times 14) /(2 \times 14)]=(-42 / 28)$
$(-3 / 4)=[(-3 \times 7) /(4 \times 7)]=(-21 / 28)$
Clearly, $(-42 / 28)<(-21 / 28)<(-12 / 28)$
Hence, $(-3 / 2)<(-3 / 4)<(-3 / 7)$
15. Find the sum: $($ i $)-2 \frac{1}{3}+4 \frac{3}{5} \quad$ (ii) $\frac{-4}{5} \div(-3) \quad$ (iii) $\frac{-6}{13}-\left(\frac{-7}{15}\right)$

Ans:
(i) $-2 \frac{1}{3}+4 \frac{3}{5}=-\left(2 \frac{1}{3}\right)+4 \frac{3}{5}=-\frac{7}{3}+\frac{23}{5}=\frac{-35+69}{15}=\frac{34}{15}=2 \frac{4}{15}$
(ii) $\frac{-4}{5} \div(-3)=\frac{-4}{5} \div\left(\frac{-3}{1}\right)=\frac{-4}{5} \times \frac{1}{-3}$
$=\frac{-4}{5} \times-\frac{1}{3}=\frac{-4 \times(-1)}{5 \times 3}=\frac{4}{15}$
(iii) $\frac{-6}{13}-\left(\frac{-7}{15}\right)=\frac{-6}{13}+\frac{7}{15}=\frac{-90+91}{195}=\frac{1}{195}$
16. Saima wants to put a lace on the edge of a circular table cover of diameter 1.5 m . Find the length of the lace required and also find its cost if one meter of the lace costs Rs 15 . (Take $\pi=3.14$)
Ans: Diameter of the circular table $=1.5 \mathrm{~m}$
We know that radius $(\mathrm{r})=\mathrm{d} / 2=1.5 / 2=0.75 \mathrm{~m}$
Then, Circumference of the circle $=2 \pi$ r
$=2 \times 3.14 \times 0.75=4.71 \mathrm{~m}$
So, the length of the lace $=4.71 \mathrm{~m}$
Cost of 1 m lace $=₹ 15$ [given]
Cost of 4.71 m lace $=₹ 15 \times 4.71=₹ 70.65$
17. The two sides of the parallelogram ABCD are 6 cm and 4 cm . The height corresponding to the base CD is 3 cm . Find the (i) area of the parallelogram. (ii) the height corresponding to the base AD .
Ans: (i) Area of parallelogram $=\mathrm{b} \times \mathrm{h}=6 \mathrm{~cm} \times 3 \mathrm{~cm}=18 \mathrm{~cm} 2$

(ii) base $(\mathrm{b})=4 \mathrm{~cm}$, height $=x$,

Area $=18 \mathrm{~cm}^{2}$
\Rightarrow Area of parallelogram $=\mathrm{b} \times \mathrm{x}$
$\Rightarrow 18=4 \times \mathrm{x}$
$\Rightarrow 18 / 4=x$
Therefore, $\mathrm{x}=4.5 \mathrm{~cm}$
Thus, the height corresponding to base AD is 4.5 cm .

SECTION - E

Questions 18 to 20 carry 4 marks each.

18. Represent these numbers on the number line. (i) $\frac{7}{4}$ (ii) $\frac{-5}{6}$ (iii) $\frac{4}{7}$ (iv) $\frac{9}{4}$

Ans:
(i)

(ii)

Similarly other two (iii) and (iv)
19. $\triangle \mathrm{ABC}$ is right angled at A (see below figure). AD is perpendicular to BC . If $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=13 \mathrm{~cm}$ and $A C=12 \mathrm{~cm}$, Find the area of $\triangle A B C$. Also find the length of $A D$.

Ans: Given that. $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=13 \mathrm{~cm}, \mathrm{AC}=12 \mathrm{~cm}$
Then, We know that, Area of the $\triangle \mathrm{ABC}=1 / 2 \times$ Base \times Height
$=1 / 2 \times \mathrm{AB} \times \mathrm{AC}=1 / 2 \times 5 \times 12=1 \times 5 \times 6=30 \mathrm{~cm}^{2}$
Now, Area of $\triangle \mathrm{ABC}=1 / 2 \times$ Base \times Height
$\Rightarrow 30=1 / 2 \times \mathrm{AD} \times \mathrm{BC} \Rightarrow 30=1 / 2 \times \mathrm{AD} \times 13 \Rightarrow(30 \times 2) / 13=\mathrm{AD}$
$\Rightarrow \mathrm{AD}=60 / 13 \Rightarrow \mathrm{AD}=4.6 \mathrm{~cm}$
20. Shazli took a wire of length 44 cm and bent it into the shape of a circle. Find the radius of that circle. Also find its area. If the same wire is bent into the shape of a square, what will be the length of each of its sides? Which figure encloses more area, the circle or the square?
Ans: Length of wire that Shazli took $=44 \mathrm{~cm}$
Then, If the wire is bent into a circle,
We know that the circumference of the circle $=2 \pi \mathrm{r}$
$\Rightarrow 44=2 \times(22 / 7) \times r \Rightarrow 44=44 / 7 \times r \Rightarrow(44 \times 7) / 44=r \Rightarrow r=7 \mathrm{~cm}$
Area of the circle $=\pi r^{2}=22 / 7 \times 7^{2}=22 / 7 \times 7 \times 7=22 \times 7=154 \mathrm{~cm}^{2}$
Now, If the wire is bent into a square,

The length of each side of the square $=44 / 4=11 \mathrm{~cm}$ Area of the square $=$ Length of the side of square ${ }^{2}=11^{2}$ $=121 \mathrm{~cm}^{2}$
By comparing the two areas of the square and circle, Clearly, the circle encloses more area.

