PM SHRI KENDRIYA VIDYALAYA GACHIBOWLI, GPRA CAMPUS, HYD-32 PRACTICE PAPER 06 (2023-24)

PERIMETER AND AREA & ALGEBRAIC EXPRESSIONS

(ANSWERS)

SUBJECT: MATHEMATICS

CLASS : VII

MAX. MARKS : 40 DURATION : 1½ hr

General Instructions:

- (i). All questions are compulsory.
- (ii). This question paper contains 20 questions divided into five Sections A, B, C, D and E.
- (iii). Section A comprises of 6 MCQs of 1 mark each. Section B comprises of 1 CCT question of 4 marks each which contains 4 MCQs. Section C comprises of 3 questions of 2 marks each. Section D comprises of 4 questions of 3 marks each and Section E comprises of 3 questions of 4 marks each.

 $\Rightarrow \text{ length } \times \text{ breadth } = \pi r^2 \Rightarrow 14 \times 11 = (22/7) \times r^2$ $\Rightarrow r^2 = (14 \times 11 \times 7)/22 \Rightarrow r^2 = 49 \Rightarrow r = \sqrt{49} \Rightarrow r = 7 \text{ cm}$

4. Identify the binomial out of the following: (a) $3xy^2 + 5y - x^2y$ (b) $x^2y - 5y - x^2y$ (c) xy + yz + zx (d) $3xy^2 + 5y - xy^2$ Ans: (d) $3xy^2 + 5y - xy^2$ Expression with two unlike terms is called a 'Binomial'.

As area of rectangle = area of circle

The expression $3xy^2 + 5y - xy^2$ is further simplified as, = $3xy^2 + 5y - xy^2 = (3xy^2 - xy^2) + 5y = 2xy^2 + 5y$

5. The sum of the coefficients in the monomials 3a²b and --2ab² is

(a) 5
(b) -1
(c) 1
(d) 6

Ans: (c) 1
Since, the coefficient in the monomial 3a²b is 3 and the coefficient in the monomial -2ab² is -2.

So, the sum of the coefficients in the monomials $3a^2b$ and $-2ab^2 = 3 + (-2) = 3 - 2 = 1$ 6. The sum of the values of the expression $2x^2 + 2x + 2$ when x = -1 and x = 1 is (a) 6 (b) 8 (c) 4 (d) 2 Ans: (b) 8 Since, when x = -1, the value of the expression $2x^2 + 2x + 2 = 2(-1)^2 + 2(-1) + 2 = 2 - 2 + 2 = 2$ And, when x = 1, the value of the expression $2x^2 + 2x + 2 = 2(1)^2 + 2(1) + 2 = 2 + 2 + 2 = 6$ So, the sum of the values of the expression $2x^2 + 2x + 2 = 2(1)^2 + 2(1) + 2 = 2 + 2 + 2 = 6$

<u>SECTION – B(CCT Questions)</u> Questions 7 to 10 carry 1 mark each.

CCT Question

In Gulmohar colony, two cross roads, each of width 5 m, run at right angles through the centre of a rectangular park of length 70 m and breadth 45 m and parallel to its sides. Ram is a student of Class VII residing in Gulmohar park. One day he has taken all the measurements and drawn a rough diagram of two cross roads as shown in below figure:

Prepared by: M. S. KumarSwamy, TGT(Maths)

$\underline{SECTION - C}$ Questions 11 to 13 carry 2 marks each.

- **11.** Find the area of a circle whose diameter is 8.4 cm
 - Ans: Let r be the radius of the circle. Then, $r = 8.4 \div 2 = 4.2$ cm. \therefore Area of the circle = πr^2

$$\Rightarrow A = \frac{22}{7} \times (4.2)^2 cm^2$$
$$\Rightarrow A = \frac{22}{7} \times 4.2 \times 4.2 cm^2 = (22 \times 0.6 \times 4.2) cm^2 = 55.44 cm^2$$

12. The circumference of a circle is 3.14 m, find its area. Ans: We have Circumference of the circle = $3.14 = 2\pi r$

$$\Rightarrow 3.14 \text{ m} = \left(2 \times \frac{22}{7} \times \text{r}\right) \text{m} \Rightarrow r = \frac{3.14 \times 7}{2 \times 22} \text{ m} = \frac{1}{2} \text{m}$$

$$\therefore \text{ Area of the circle } = \pi \text{r}^2$$

$$\Rightarrow A = \frac{22}{7} \times \left(\frac{1}{2}\right)^2 \text{m}^2$$

$$\Rightarrow A = \left(\frac{22}{7} \times \frac{1}{2} \times \frac{1}{2}\right) \text{m}^2 = \frac{22}{28} \text{m}^2 = 0.785 \text{ m}^2$$

13. Find the value of the following expressions for a = 3, b = 2. (i) a + b (ii) 7a - 4b (iii) $a^2 + 2ab + b^2$ (iv) $a^3 - b^3$ Ans: Substituting a = 3 and b = 2 in (i) a + b, we get a + b = 3 + 2 = 5(ii) 7a - 4b, we get $7a - 4b = 7 \times 3 - 4 \times 2 = 21 - 8 = 13.$

<u>SECTION – D</u>

Questions 14 to 17 carry 3 marks each.

14. In the given figure, ABCD is a parallelogram, $CE \perp AB$ and $BF \perp AD$. If AB = 12cm, AD = 10cm and CE = 8cm, find BE.

Ans:

Area of
$$\|\text{gm } ABCD = Base \times Altitude = AB \times CE ...(i) = 12 \text{ cm} \times 8 \text{ cm} = 96 \text{ cm}^2$$

Also, area of $\|\text{gm } ABCD = AD \times BF = 10 \times BF$...(ii)
From (i) and (ii) $10 \times BF = 96$
 $\therefore BF = \frac{96}{10} \text{ cm} = 9.6 \text{ cm}.$
15. Find the value of the following expressions when $n = -2$.
(i) $5n - 2$ (ii) $5n^2 + 5n - 2$ (iii) $n^3 + 5n^2 + 5n - 2$
Ans: (i) Putting the value of $n = -2$, in $5n - 2$, we get,
 $5(-2) - 2 = -10 - 2 = -12$
(ii) $1n 5n^2 + 5n - 2$, we have,
for $n = -2$, $5n - 2 = -12$
and $5n^2 = 5 \times (-2)^2 = 5 \times 4 = 20$ [as $(-2)^2 = 4$]
Combining, $5n^2 + 5n - 2 = 20 - 12 = 8$

Prepared by: M. S. KumarSwamy, TGT(Maths)

 \sim

(iii) Now, for n = -2, $5n^2 + 5n - 2 = 8$ and $n^3 = (-2)^3 = (-2) \times (-2) \times (-2) = -8$ Combining, $n^3 + 5n^2 + 5n - 2 = -8 + 8 = 0$

16. Identify terms which contain y^2 and give the coefficient of y^2 . (i) $8 - xy^2$ (ii) $5y^2 + 7x$ (iii) $2x^2y - 15xy^2 + 7y^2$

Ans:

S. No.	Expression	Terms	Coefficient of y ²
(i)	$8 - xy^2$	$-xy^2$	- X
(ii)	$5y^2 + 7x$	$5y^2$	5
(iii)	$2x^2y - 15xy^2 + 7y^2$	$-15xy^{2}$	- 15x
		$7y^2$	7

17. Identify the terms and their factors in the expressions: $1 + x + x^2$ Show the terms and factors by tree diagrams.

Ans: Expression: $1 + x + x^2$

Terms: 1, x, x^2

Factors: 1; x; x,x

<u>SECTION – E</u> Questions 18 to 20 carry 4 marks each.

- **18.** Simplify these expressions and find their values if x = 3, a = -1, b = -2. (i) 3x - 5 - x + 9 (ii) 2 - 8x + 4x + 4 (iii) 3a + 5 - 8a + 1 (iv) 10 - 3b - 4 - 5bAns: (i) From the question, it is given that x = 3We have, = 3x - x - 5 + 9 = 2x + 4Then, substitute the value of x in the equation. $= (2 \times 3) + 4 = 6 + 4 = 10$ (ii) From the question, it is given that x = 3We have, = 2 + 4 - 8x + 4x = 6 - 4xThen, substitute the value of x in the equation. $= 6 - (4 \times 3) = 6 - 12 = -6$ (iii) From the question, it is given that a = -1We have, = 3a - 8a + 5 + 1 = -5a + 6Then, substitute the value of a in the equation. $= -(5 \times (-1)) + 6 = -(-5) + 6 = 5 + 6 = 11$ (iv) From the question, it is given that b = -2We have, = 10 - 4 - 3b - 5b = 6 - 8bThen, substitute the value of b in the equation. $= 6 - (8 \times (-2)) = 6 - (-16) = 6 + 16 = 22$
- 19. The radius of one circular field is 20 m and that of another is 48 m. Find the radius of the third circular field whose area is equal to the sum of the areas of two fields.Ans: Let the area of the circle whose radius is 20 m be A₁, and the area of the circle whose radius is 48 m be A₂. Let A₃ be the area of a circle that is equal to the sum of the areas of the two fields,

with the radius of its field being r cm.

$$\therefore A_{3} = A_{1} + A_{2}$$

$$A_{1} = \pi (20)^{2} = \frac{22}{7} \times 20 \times 20m^{2} = (400\pi)m^{2}$$

$$A_{2} = \pi (48)^{2} = \frac{22}{7} \times 48 \times 48m^{2} = (2304\pi)m^{2}$$

$$A_{3} = A_{1} + A_{2} = (400\pi) + (2304\pi) = \pi (400 + 2304)m^{2}$$

$$\Rightarrow A_{3} = \pi (r)^{2} = \pi (400 + 2304)m^{2}$$

$$\Rightarrow (r)^{2} = (400 + 2304)m^{2}$$

$$\Rightarrow r = \sqrt{2704} m = 52 m$$

20. In the below figure, *ABCD* is a parallelogram, $DL \perp AB$. If AB = 20 cm, AD = 13 cm and area of the parallelogram is 100 cm², find *AL*.

Ans: We have, *ABCD* is a parallelogram with base AB = 20 cm and corresponding altitude *DL*. It is given that the area of the parallelogram *ABCD* = 100 cm² Now, Area of a parallelogram = Base x Height $100 \text{ cm}^2 = AB \text{ x } DL$ $100 \text{ cm}^2 = 20 \text{ cm x } DL$

 $\therefore DL = \frac{100 \, cm^2}{20 \, cm} = 5 \, cm$ Again by Pythagoras theorem, we have, $(AD)^2 = (AL)^2 + (DL)^2$ $\Rightarrow (13)^2 = (AL)^2 + (5)^2$ $\Rightarrow (AL)^2 = (13)^2 - (5)^2 = 169 - 25 = 144$ $\Rightarrow (AL)^2 = (12)^2 \Rightarrow AL = 12 \, cm$ Hence. length of AL is 12 cm.

Prepared by: M. S. KumarSwamy, TGT(Maths)