$\mathcal{S U B I} \mathcal{E C T}: ~ \mathcal{M A T H E M A T} I C S$
CLASS : VII

MAX. MARKS : 40

General Instructions:

(i). All questions are compulsory.
(ii). This question paper contains 20 questions divided into five Sections $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E .
(iii). Section A comprises of 6 MCQs of 1 mark each. Section B comprises of $\mathbf{1}$ CCT question of 4 marks each which contains 4 MCQs. Section C comprises of 3 questions of 2 marks each. Section D comprises of 4 questions of $\mathbf{3}$ marks each and Section E comprises of 3 questions of $\mathbf{4}$ marks each.

SECTION - A

Questions 1 to 6 carry 1 mark each.

1. Ratio of area of $\Delta \mathrm{MNO}$ to the area of parallelogram MNOP in the below figure is
(a) $2: 3$
(b) $1: 1$
(c) $1: 2$
(d) $2: 1$

Ans: (c) $1: 2$
From the figure, Area of $\Delta \mathrm{MNO}=1 / 2 \times$ base \times height $=1 / 2 \times \mathrm{NO} \times \mathrm{OQ}$
Area of parallelogram MNOP $=$ base \times corresponding height
$=\mathrm{MP} \times \mathrm{OQ}=\mathrm{NO} \times \mathrm{OQ} \ldots$ [from the figure $\mathrm{MP}=\mathrm{NO}]$
Then, ratio of parallelogram and triangle $=(1 / 2 \times N O \times O Q) /(N O \times O Q)=1 / 2=1: 2$
2. A wire is bent to form a square of side 22 cm . If the wire is rebent to form a circle, its radius is
(a) 22 cm
(b) 14 cm
(c) 11 cm
(d) 7 cm

Ans: (b) 14 cm
From the question it is given that, side of square is 22 cm and also, perimeter of a square and circumference of circle are equal, because the length of the wire is same.
Perimeter of square $=$ circumference of circle
$\Rightarrow 4 \times$ side $=2 \times \pi \times r \Rightarrow 4 \times 22=2 \times(22 / 7) \times r$
$\Rightarrow \mathrm{r}=(4 \times 22 \times 7) /(2 \times 22) \Rightarrow \mathrm{r}=14 \mathrm{~cm}$
3. Area of a rectangle and the area of a circle are equal. If the dimensions of the rectangle are $14 \mathrm{~cm} \times$

11 cm , then radius of the circle is
(a) 21 cm
(b) 10.5 cm
(c) 14 cm
(d) 7 cm .

Ans: (d) 7 cm
From the question it is given that, dimensions of rectangle length $=14 \mathrm{~cm}$, breadth $=11 \mathrm{~cm}$
As area of rectangle $=$ area of circle
\Rightarrow length \times breadth $=\pi r^{2} \Rightarrow 14 \times 11=(22 / 7) \times r^{2}$
$\Rightarrow r^{2}=(14 \times 11 \times 7) / 22 \Rightarrow r^{2}=49 \Rightarrow r=\sqrt{49} \quad \Rightarrow r=7 \mathrm{~cm}$
4. Identify the binomial out of the following:
(a) $3 x y^{2}+5 y-x^{2} y$
(b) $x^{2} y-5 y-x^{2} y$
(c) $x y+y z+z x$
(d) $3 x y^{2}+5 y-x y^{2}$

Ans: (d) $3 x y^{2}+5 y-x y^{2}$
Expression with two unlike terms is called a 'Binomial'.

The expression $3 x y^{2}+5 y-x y^{2}$ is further simplified as,
$=3 x y^{2}+5 y-x y^{2}=\left(3 x y^{2}-x y^{2}\right)+5 y=2 x y^{2}+5 y$
5. The sum of the coefficients in the monomials $3 a^{2} b$ and $-2 a b^{2}$ is
(a) 5
(b) -1
(c) 1
(d) 6

Ans: (c) 1
Since, the coefficient in the monomial $3 a^{2} b$ is 3 and the coefficient in the monomial $-2 a b^{2}$ is -2 .
So, the sum of the coefficients in the monomials $3 a^{2} b$ and $-2 a b^{2}=3+(-2)=3-2=1$
6. The sum of the values of the expression $2 x^{2}+2 x+2$ when $x=-1$ and $x=1$ is
(a) 6
(b) 8
(c) 4
(d) 2

Ans: (b) 8
Since, when $x=-1$, the value of the expression $2 x^{2}+2 x+2=2(--1)^{2}+2(--1)+2=2--2+2=2$
And, when $x=1$, the value of the expression $2 x^{2}+2 x+2=2(1)^{2}+2(1)+2=2+2+2=6$
So, the sum of the values of the expression $2 x^{2}+2 x+2$ when $x=-1$ and $x=1=2+6=8$

SECTION - B(CCT Questions)

Questions 7 to 10 carry 1 mark each.

CCT Question

In Gulmohar colony, two cross roads, each of width 5 m , run at right angles through the centre of a rectangular park of length 70 m and breadth 45 m and parallel to its sides. Ram is a student of Class VII residing in Gulmohar park. One day he has taken all the measurements and drawn a rough diagram of two cross roads as shown in below figure:

Answer the following questions based on the above information:

7. Find the Area of the rectangle PQRS
(a) $225 \mathrm{~m}^{2}$
(b) $350 \mathrm{~m}^{2}$
(c) $25 \mathrm{~m}^{2}$
(d) $550 \mathrm{~m}^{2}$

Ans: (a) $225 \mathrm{~m}^{2}$
8. Find the Area of the rectangle EFGH
(a) $225 \mathrm{~m}^{2}$
(b) $350 \mathrm{~m}^{2}$
(c) $25 \mathrm{~m}^{2}$
(d) $550 \mathrm{~m}^{2}$

Ans: (b) $350 \mathrm{~m}^{2}$
9. Find the Area of the Square KLMN
(a) $225 \mathrm{~m}^{2}$
(b) $350 \mathrm{~m}^{2}$
(c) $25 \mathrm{~m}^{2}$
(d) $550 \mathrm{~m}^{2}$

Ans: (c) $25 \mathrm{~m}^{2}$
10. Find the area of the road.
(a) $225 \mathrm{~m}^{2}$
(b) $350 \mathrm{~m}^{2}$
(c) $25 \mathrm{~m}^{2}$
(d) $550 \mathrm{~m}^{2}$
Ans: (d) $550 \mathrm{~m}^{2}$

SECTION - C

Questions 11 to 13 carry 2 marks each.

11. Find the area of a circle whose diameter is 8.4 cm

Ans: Let r be the radius of the circle. Then, $\mathrm{r}=8.4 \div 2=4.2 \mathrm{~cm}$.
\therefore Area of the circle $=\pi r^{2}$
$\Rightarrow A=\frac{22}{7} \times(4.2)^{2} \mathrm{~cm}^{2}$
$\Rightarrow A=\frac{22}{7} \times 4.2 \times 4.2 \mathrm{~cm}^{2}=(22 \times 0.6 \times 4.2) \mathrm{cm}^{2}=55.44 \mathrm{~cm}^{2}$
12. The circumference of a circle is 3.14 m , find its area.

Ans: We have Circumference of the circle $=3.14=2 \pi r$
$\Rightarrow 3.14 \mathrm{~m}=\left(2 \times \frac{22}{7} \times \mathrm{r}\right) \mathrm{m} \Rightarrow r=\frac{3.14 \times 7}{2 \times 22} \mathrm{~m}=\frac{1}{2} \mathrm{~m}$
\therefore Area of the circle $=\pi r^{2}$
$\Rightarrow A=\frac{22}{7} \times\left(\frac{1}{2}\right)^{2} \mathrm{~m}^{2}$
$\Rightarrow A=\left(\frac{22}{7} \times \frac{1}{2} \times \frac{1}{2}\right) \mathrm{m}^{2}=\frac{22}{28} \mathrm{~m}^{2}=0.785 \mathrm{~m}^{2}$
13. Find the value of the following expressions for $a=3, b=2$.
(i) $a+b$ (ii) $7 a-4 b$ (iii) $a^{2}+2 a b+b^{2}$ (iv) $a^{3}-b^{3}$

Ans: Substituting $\mathrm{a}=3$ and $\mathrm{b}=2$ in
(i) $a+b$, we get $a+b=3+2=5$
(ii) $7 \mathrm{a}-4 \mathrm{~b}$, we get
$7 \mathrm{a}-4 \mathrm{~b}=7 \times 3-4 \times 2=21-8=13$.

SECTION - D

Questions 14 to 17 carry 3 marks each.

14. In the given figure, $A B C D$ is a parallelogram, $C E \perp A B$ and $B F \perp A D$. If $A B=12 \mathrm{~cm}, A D=10 \mathrm{~cm}$ and $C E=8 \mathrm{~cm}$, find $B E$.
Ans:
Area of $\| \mathrm{gm} A B C D$

$$
\begin{align*}
& =\text { Base } \times \text { Altitude }=A B \times C E \tag{i}\\
& =12 \mathrm{~cm} \times 8 \mathrm{~cm}=96 \mathrm{~cm}^{2} \tag{ii}
\end{align*}
$$

Also, area of $\| \mathrm{gm} A B C D=A D \times B F=10 \times B F$

From (i) and (ii) $10 \times B F=96$
$\therefore B F=\frac{96}{10} \mathrm{~cm}=9.6 \mathrm{~cm}$.
15. Find the value of the following expressions when $n=-2$.
(i) $5 \mathrm{n}-2$
(ii) $5 n^{2}+5 n-2$
(iii) $n^{3}+5 n^{2}+5 n-2$

Ans: (i) Putting the value of $n=-2$, in $5 n-2$, we get,
$5(-2)-2=-10-2=-12$
(ii) In $5 n^{2}+5 n-2$, we have,
for $\mathrm{n}=-2,5 \mathrm{n}-2=-12$
and $5 \mathrm{n}^{2}=5 \times(-2)^{2}=5 \times 4=20\left[\right.$ as $\left.(-2)^{2}=4\right]$
Combining, $5 \mathrm{n}^{2}+5 \mathrm{n}-2=20-12=8$
(iii) Now, for $\mathrm{n}=-2$,
$5 n^{2}+5 n-2=8$ and
$\mathrm{n}^{3}=(-2)^{3}=(-2) \times(-2) \times(-2)=-8$
Combining, $\mathrm{n}^{3}+5 \mathrm{n}^{2}+5 \mathrm{n}-2=-8+8=0$
16. Identify terms which contain y^{2} and give the coefficient of y^{2}.
(i) $8-x y^{2}$ (ii) $5 y^{2}+7 x$ (iii) $2 x^{2} y-15 x y^{2}+7 y^{2}$

Ans:

S. No.	Expression	Terms	Coefficient of y^{2}
(i)	$8-\mathrm{xy}^{2}$	$-\mathrm{xy}^{2}$	-x
(ii)	$5 y^{2}+7 \mathrm{x}$	$5 y^{2}$	5
(iii)	$2 \mathrm{x}^{2} \mathrm{y}-15 \mathrm{xy}^{2}+7 \mathrm{y}^{2}$	$-15 \mathrm{xy}^{2}$ $7 y^{2}$	-15 x 7

17. Identify the terms and their factors in the expressions: $1+x+x^{2}$

Show the terms and factors by tree diagrams.
Ans: Expression: $1+\mathrm{x}+\mathrm{x}^{2}$
Terms: $1, \mathrm{x}, \mathrm{x}^{2}$
Factors: 1; x; x, x

SECTION - E

Questions 18 to 20 carry 4 marks each.
18. Simplify these expressions and find their values if $x=3, a=-1, b=-2$.
(i) $3 x-5-x+9$ (ii) $2-8 x+4 x+4$ (iii) $3 a+5-8 a+1$ (iv) $10-3 b-4-5 b$

Ans: (i) From the question, it is given that $x=3$
We have, $=3 \mathrm{x}-\mathrm{x}-5+9=2 \mathrm{x}+4$
Then, substitute the value of x in the equation.
$=(2 \times 3)+4=6+4=10$
(ii) From the question, it is given that $x=3$

We have, $=2+4-8 \mathrm{x}+4 \mathrm{x}=6-4 \mathrm{x}$
Then, substitute the value of x in the equation.
$=6-(4 \times 3)=6-12=-6$
(iii) From the question, it is given that $\mathrm{a}=-1$

We have, $=3 a-8 a+5+1=-5 a+6$
Then, substitute the value of a in the equation.
$=-(5 \times(-1))+6=-(-5)+6=5+6=11$
(iv) From the question, it is given that $\mathrm{b}=-2$

We have, $=10-4-3 b-5 b=6-8 b$
Then, substitute the value of b in the equation.
$=6-(8 \times(-2))=6-(-16)=6+16=22$
19. The radius of one circular field is 20 m and that of another is 48 m . Find the radius of the third circular field whose area is equal to the sum of the areas of two fields.
Ans: Let the area of the circle whose radius is 20 m be A_{1}, and the area of the circle whose radius is 48 m be A_{2}. Let A_{3} be the area of a circle that is equal to the sum of the areas of the two fields,
with the radius of its field being $r \mathrm{~cm}$.
$\therefore A_{3}=A_{1}+A_{2}$
$A_{1}=\pi(20)^{2}=\frac{22}{7} \times 20 \times 20 \mathrm{~m}^{2}=(400 \pi) \mathrm{m}^{2}$
$A_{2}=\pi(48)^{2}=\frac{22}{7} \times 48 \times 48 \mathrm{~m}^{2}=(2304 \pi) \mathrm{m}^{2}$
$A_{3}=A_{1}+A_{2}=(400 \pi)+(2304 \pi)=\pi(400+2304) \mathrm{m}^{2}$
$\Rightarrow A_{3}=\pi(r)^{2}=\pi(400+2304) \mathrm{m}^{2}$
$\Rightarrow(r)^{2}=(400+2304) \mathrm{m}^{2}$
$\Rightarrow r=\sqrt{2704} \mathrm{~m}=52 \mathrm{~m}$
20. In the below figure, $A B C D$ is a parallelogram, $D L \perp A B$. If $A B=20 \mathrm{~cm}, A D=13 \mathrm{~cm}$ and area of the parallelogram is $100 \mathrm{~cm}^{2}$, find $A L$.

Ans: We have, $A B C D$ is a parallelogram with base $A B=20 \mathrm{~cm}$ and corresponding altitude $D L$.
It is given that the area of the parallelogram $A B C D=100 \mathrm{~cm}^{2}$
Now,
Area of a parallelogram $=$ Base \times Height

$$
\begin{aligned}
& 100 \mathrm{~cm}^{2}=A B \times D L \\
& 100 \mathrm{~cm}^{2}=20 \mathrm{~cm} \times D L
\end{aligned}
$$

$\therefore D L=\frac{100 \mathrm{~cm}^{2}}{20 \mathrm{~cm}}=5 \mathrm{~cm}$
Again by Pythagoras theorem, we have,
$(A D)^{2}=(A L)^{2}+(D L)^{2}$
$\Rightarrow(13)^{2}=(A L)^{2}+(5)^{2}$
$\Rightarrow(A L)^{2}=(13)^{2}-(5)^{2}=169-25=144$
$\Rightarrow(A L)^{2}=(12)^{2} \Rightarrow A L=12 \mathrm{~cm}$
Hence. length of $A L$ is 12 cm .

