$\mathcal{S U B I} \mathcal{E C T}: \quad \mathcal{M A T H E M A T} I C S$
CLASS : VII

MAX. MARKS : 40

General Instructions:

(i). All questions are compulsory.
(ii). This question paper contains 20 questions divided into five Sections A, B, C, D and E.
(iii). Section A comprises of $\mathbf{6}$ MCQs of $\mathbf{1}$ mark each. Section B comprises of $\mathbf{1}$ CCT question of $\mathbf{4}$ marks each which contains 4 MCQs. Section C comprises of 3 questions of 2 marks each. Section D comprises of 4 questions of $\mathbf{3}$ marks each and Section E comprises of 3 questions of $\mathbf{4}$ marks each.

SECTION - A

Questions 1 to 6 carry 1 mark each.

1. Ratio of area of $\triangle \mathrm{MNO}$ to the area of parallelogram MNOP in the below figure is
(a) $2: 3$
(b) $1: 1$
(c) $1: 2$
(d) $2: 1$

2. A wire is bent to form a square of side 22 cm . If the wire is rebent to form a circle, its radius is
(a) 22 cm
(b) 14 cm
(c) 11 cm
(d) 7 cm
3. Area of a rectangle and the area of a circle are equal. If the dimensions of the rectangle are $14 \mathrm{~cm} \times$ 11 cm , then radius of the circle is
(a) 21 cm
(b) 10.5 cm
(c) 14 cm
(d) 7 cm .
4. Identify the binomial out of the following:
(a) $3 x y^{2}+5 y-x^{2} y$
(b) $x^{2} y-5 y-x^{2} y$
(c) $x y+y z+z x$
(d) $3 x y^{2}+5 y-x y^{2}$
5. The sum of the coefficients in the monomials $3 a^{2} b$ and $-2 a b^{2}$ is
(a) 5
(b) -1
(c) 1
(d) 6
6. The sum of the values of the expression $2 x^{2}+2 x+2$ when $x=-1$ and $x=1$ is
(a) 6
(b) 8
(c) 4
(d) 2

SECTION - B(CCT Questions)

Questions 7 to 10 carry 1 mark each.

CCT Question

In Gulmohar colony, two cross roads, each of width 5 m , run at right angles through the centre of a rectangular park of length 70 m and breadth 45 m and parallel to its sides. Ram is a student of Class VII residing in Gulmohar park. One day he has taken all the measurements and drawn a rough diagram of two cross roads as shown in below figure:

Answer the following questions based on the above information:

7. Find the Area of the rectangle PQRS
(a) $225 \mathrm{~m}^{2}$
(b) $350 \mathrm{~m}^{2}$
(c) $25 \mathrm{~m}^{2}$
(d) $550 \mathrm{~m}^{2}$
8. Find the Area of the rectangle EFGH
(a) $225 \mathrm{~m}^{2}$
(b) $350 \mathrm{~m}^{2}$
(c) $25 \mathrm{~m}^{2}$
(d) $550 \mathrm{~m}^{2}$
9. Find the Area of the Square KLMN
(a) $225 \mathrm{~m}^{2}$
(b) $350 \mathrm{~m}^{2}$
(c) $25 \mathrm{~m}^{2}$
(d) $550 \mathrm{~m}^{2}$
10. Find the area of the road.
(a) $225 \mathrm{~m}^{2}$
(b) $350 \mathrm{~m}^{2}$
(c) $25 \mathrm{~m}^{2}$
(d) $550 \mathrm{~m}^{2}$

SECTION - C
 Questions 11 to 13 carry 2 marks each.

11. Find the area of a circle whose diameter is 8.4 cm
12. The circumference of a circle is 3.14 m , find its area.
13. Find the value of the following expressions for $a=3, b=2$.
(i) $a+b$ (ii) $7 a-4 b$ (iii) $a^{2}+2 a b+b^{2}$ (iv) $a^{3}-b^{3}$

SECTION - D

Questions 14 to 17 carry 3 marks each.

14. In the given figure, ABCD is a parallelogram, $\mathrm{CE} \perp \mathrm{AB}$ and $\mathrm{BF} \perp \mathrm{AD}$. If $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{AD}=10 \mathrm{~cm}$ and $C E=8 \mathrm{~cm}$, find $B E$.
15. Find the value of the following expressions when $n=-2$.
(i) $5 \mathrm{n}-2$
(ii) $5 n^{2}+5 n-2$
(iii) $n^{3}+5 n^{2}+5 n-2$
16. Identify terms which contain y^{2} and give the coefficient of y^{2}.
(i) $8-x y^{2}$ (ii) $5 y^{2}+7 x$ (iii) $2 x^{2} y-15 x y^{2}+7 y^{2}$
17. Identify the terms and their factors in the expressions: $1+x+x^{2}$

Show the terms and factors by tree diagrams.

SECTION - E
 Questions 18 to 20 carry 4 marks each.

18. Simplify these expressions and find their values if $\mathrm{x}=3, \mathrm{a}=-1, \mathrm{~b}=-2$.
(i) $3 x-5-x+9$ (ii) $2-8 x+4 x+4$ (iii) $3 a+5-8 a+1$ (iv) $10-3 b-4-5 b$
19. The radius of one circular field is 20 m and that of another is 48 m . Find the radius of the third circular field whose area is equal to the sum of the areas of two fields.
20. In the below figure, $A B C D$ is a parallelogram, $D L \perp A B$. If $A B=20 \mathrm{~cm}, A D=13 \mathrm{~cm}$ and area of the parallelogram is $100 \mathrm{~cm}^{2}$, find $A L$.

